Pengembangan Sistem Rekomendasi Karier Personalisasi Berbasis Quantum-Inspired Evolutionary Algorithm (QEA) Menggunakan Model Prototyping Untuk Generasi Z
Keywords:
Quantum-Inspired Evolutionary Algorithm, Career Recommendation System, Generation Z Personalization, Prototyping Model, Multicriteria OptimizationAbstract
The misalignment between competencies and career choices among Generation Z necessitates the development of recommendation systems capable of comprehensively accommodating personal preferences. This research implements a Quantum-Inspired Evolutionary Algorithm (QEA) within a web-based career recommendation system using the prototyping model to generate adaptive personalization for multidimensional user profiles. The system integrates qubit rotation mechanisms with an adaptive angle of 0.12 radians through twenty iterations to evaluate compatibility between job attributes and user preferences encompassing work-life balance, learning programs, flexible hours, and mentorship availability. Black-box testing of seven functional requirements demonstrates the system's success in generating ranked recommendations based on personal scores with high sensitivity to preference variations. Quantitative evaluation involving thirteen Generation Z respondents yielded an average score of 4.45 on a five-point scale for the recommendation suitability dimension, confirming the effectiveness of the QEA approach in producing outputs responsive to individual user characteristics.
References
Astuti, N. A. P. (2023). Pengembangan e-modul career untuk meningkatkan keputusan karir siswa SMK Negeri 2 Majene [Skripsi Sarjana, Universitas Negeri Makassar]. Fakultas Ilmu Pendidikan, UNM.
Benítez-Márquez, M. D., Sánchez-Teba, E. M., Bermúdez-González, G., & Núñez-Rydman, E. S. (2022). Generation Z Within the Workforce and in the Workplace: A Bibliometric Analysis. Frontiers in Psychology, 12(February), 1–16. https://doi.org/10.3389/fpsyg.2021.736820
Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The unified modeling language user guide (2nd ed.). Addison-Wesley. https://proquest.tech.safaribooksonline.de/032126797426
GeeksforGeeks. (2025). Black box testing – software engineering. GeeksforGeeks. https://www.geeksforgeeks.org/software-testing/software-engineering-black-box-testing/
Iyer, G. R., & Hospital, M. G. (2015). Node . js : Event driven Concurrency for Web Applications. January 2013. https://doi.org/10.13140/RG.2.1.2591.9849
Pratondo, D. A. (2023). Pengembangan sistem rekomendasi berbasis content-based filtering pada data dinamis. TEKNOMATIKA, 6(3), 355–364.
Pressman, R. S., & Maxim, B. R. (2019). Software engineering: A practitioner’s approach (9th ed.). McGraw-Hill Education.
Rachman, M. (2009). Manajemen Sumber Daya Manusia dan Pengembangan Karir. Jakarta: Mitra Wacana Media.
Sommerville, I. (2011). Software engineering (9th ed.). Addison-Wesley (Pearson Education, Inc.).
Zant, R. F. (2005). Hands-on Prototyping in System Analysis and Design. Issues In Information Systems, VI(1), 10–14. https://doi.org/10.48009/1_iis_2005_10-14












